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1 Introduction

Foot-and-mouth is a disease of global socioeconomic importance, with vaccination the princi-
ple tool for control in endemic countries. Improvements in vaccines require advances in our
understanding of the host immune response, one aspect of which the study group is asked to
consider. Major problems limit the capacity of FMDV vaccines to control infections in devel-
oping countries. The virus is notoriously unstable which reduces the yield and effectiveness of
the vaccine. A FMDV-specific difficulty is that effective vaccination requires the presence of
intact inactivated virus or virus-like particles. Individual proteins or peptides have proven to
be insufficiently immunogenic for use as vaccine antigen.

To be recognised by T lymphocytes, viral protein must first be converted into short peptide
pieces by antigen presenting cells such as dendritic cells (DC), which thereby control the
magnitude and character of the immune response. We have evidence to show vaccine produced
from viruses of different serotypes can differentially stimulate T cell responses. The principle
difference between these virus strains is their capsid stability (see below), which may influence
both the uptake of virus capsid by DCs and the subsequent controlled processing of the capsids
to produce peptides for presentation to stimulate T-cells (responsible for helping B cells to
produce antibodies and clear the virus). Figure 1 shows the decay rate of capsids in a particular
assay at 49oC.

We would like a model of this process to be developed to explore the interplay of uptake
and processing of viral capsids and the impact of capsid stability on gross dynamics of the
system. If possible, we would like the group to address the specific question of whether it is
the virus strains different stability properties that are responsible for the observed differences
in system behaviour. We assume this would either be driven by the characteristics that capsid
stability (or instability) imparts to an individual virus particle or how the DCs handle virus
fragments as opposed to whole virions. Specifically,

1. Is the efficiency of capsid uptake from extracellular environment by specialised antigen
presenting cells (dendritic cells) influenced by the stability of the capsids?

2. Is the processing of the capsid proteins into short peptides influenced by the stability of
the capsids?

3. Is the magnitude of the T cell response influenced by the period of time antigen is retained
in dendritic cells?

4. Overall, does capsid stability result in an increased specific T cell proliferative response
in antigen presentation assays?

5. How does antibody mediated uptake of FMDV capsids influence the subsequent B cell
and T cell responses?

1

Report on a problem studied at the UK Mathematics-in-Medicine Study Group Imperial College 2009
< https://mmsg.mathmos.net/uk/2009/foot-and-mouth/ >

https://mmsg.mathmos.net/uk/2009/foot-and-mouth/


Figure 1: Comparison of the thermal stability of A and SAT2 capsids. The vertical axis shows
the percentage of intact capsids remaining after incubation at 49oC. The horizontal axis shows
the incubation time in minutes. Closed circles represent live virus and open circles represent
inactivated virus (vaccine antigen). Using this assay, A capsids are approximately 50 fold more
stable than SAT2 capsids.

6. Can the model be further developed to predict the response to a second immunisation
(booster)?

2 Mathematical model

2.1 Introduction

We aim to construct a model that describes the immediate and long-term immune response to
a vaccine introduced into an animal. In simple terms, the vaccine initiates the production of
specialist cells (namely B-cells and T-cells) that produce antibodies, which combine with the
vaccine capsids and ultimately eliminate them from the system. The success of the vaccination
against future FMDV infections requires sufficient levels and sufficiently long occupation time
of the antibodies and the cells producing them. The key issue explored in the modelling to
come is the effect of the stability of the vaccine, or in more conventional mathematical terms
“the vaccine’s decay rate”, on the resulting immune response. The proposed model goes some
way to address the questions in the Introduction, see Section 2.4.

2.2 Modelling of the immune system network

To simplify the modelling we will compartmentalise the system and avoid explicit treatment of
the spatial distribution of the model components. Hence, the model variables, listed in Table
1, can be considered to be masses that are functions of time t only. Unlike many pathogens,
or other alien agents that the immune system is required to deal with, the vaccine capsid
appears not to interfere or inhibit any of the immune response processes. The modelling will
therefore describe, in a very simplified way, the “classical” adaptive immune response network.
This network consists of two principle pathways, which will be termed the “short-term” and
“long-term” pathways; these are illustrated in terms of the variable symbols in Figure ?? and
discussed in detail below.

Short-term pathway: The vaccine capsids (V ) migrates into the lymphatic system and pass
into the lymph nodes. There the antigen markers on the capsid surface will stimulate a
cascade of responses that will, in time (τ1, about 1 day), generate targeted B-cells (BS)
that in turn release into the body specifically-targeted antibodies (immunoglobin IgM,
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Variable Interpretation
V Vaccine concentration
C Antigen-Antibody complex concentration
BS Short term memory B cell concentration
AS Short term memory antibody (IgM) concentration
DU Unactivated dendritic cell concentration (assumed constant)
DM Activated DC level via macropinocytosis
DF Activated DC level via the fc activation process
T T cell level
BL Long term memory B cell level
AL Long term memory antibody (IgG) level
Q Level of T cell activation

Table 1: Table of the model variables

As) that binds with the free capsis to form a capsid-antibody complex (C); though this
complex is inert, it is involved in the long-term pathway. After the stimulus is removed,
the specific B-cell population and consequently antibody production will decline and
vanish over a period of a few weeks. This pathway has no in built memory, so that any
future insults, either by virus or vaccine, will initiate this process from scratch.

Long-term pathway: The vaccine capsids are delivered to the lymph nodes by DCs, stim-
ulating a different set of responses to that of the short-term pathway. Dendritic cells
(DU ) are present throughout the body, and can take up and become activated in two
ways. Firstly, by direct uptake of the capsid particles by macropinocytosis (DU → DM )
and, secondly, by uptake of the capsid-antibody complex via the fc activation process
(DU → DF ). These activated DCs migrate to the lymph-node to present the antigen to
naive T-cells, which in time (approximately 3-4 day = τ2), mature to targeted T-cells
(T ). The targeted T-cells stimulate development of a new line of differentiated B-cells
(BL), which release more antibodies (AL, specifically the immunoglobin IgG) into the
body. The key difference in this system is that the specific T-cell line is constantly re-
newed after the presence of the vaccine and hence there is continuous supply of B-cells
and IgG long after the inoculation. In the event of a future insult, either by booster
vaccine or by FMDV, the specific T-cells divide, in the right circumstances, to a much
more enhanced and rapid immune response.

Key to the success of the long-term pathway is the number of T-cells that is generated from the
first vaccine inoculation. It will be assumed in the model that the “tick-over” level of T-cells,
i.e. the long term level following the inoculation, is a linear function of the total amount of
DC activation, i.e. the “memory variable” Q(t).

2.3 Mathematical modelling

We construct the model based on standard mass action laws applied to the pathway shown in
Figure 2. The only exceptions to this is the activation rates of DCs, in which it is assume that
DCs have only a limited uptake potential of the viral capsid and complex; Michaelis-Menten
kinetics being employed to describe this saturation in uptake. It is expected that a very small
fraction of the total population of DCs will be involved in the vaccination process and we
assume the unactivated DC level, DU , remains constant. Finally, the period of time for B-cell
and T-cell generation will be modelled as simple single time point delays. There are a large
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Figure 2: Schematic of the immune response network to the vaccine. The terms in the square
boxes are the model’s variables (see Table 1) and the arrows labelled with rate constants of
the form β∗ indicate production and those labelled with rate constants γ∗ indicate production
via interaction of 2 or more components. The bracketed “τ∗” terms indicates the time delay
along the associated path. Natural decay is assumed for all variables except for the memory
variable Q.

number of parameters in this system, broadly speaking those starting with β∗ are birth rates,
γ∗ are conversion rates and δ∗ are decay rates (see Table 2).

The evolution of the vaccine is given by

dV

dt
= − δV V − γV SV AS − γV UDU

(
V

V + VC

)
− γV LV AL, (1)

which describes the loss rates of V via, in order, natural decay, uptake by IgM, uptake by
unactivated DCs and uptake by IgG. The key parameter describing the stability of the vaccine
is δV , which is decay rate constant of the vaccine, such that the half-life of the vaccine is
ln(2)/δV ; hence reducing stability corresponds to increasing δV .
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The modelling of the short-term pathway is relatively straightforward and is given by

dBS

dt
= βBV V (t− τ1)− δBS

BS , (2)

dAS

dt
= βBS

BS − γV SV AS − δAS
AS . (3)

Here, we have implicitly assumed that the level of vaccine in the lymph nodes is proportional
to the total level. The output rate of B-cells is dependent on the vaccine levels a time τ1
ago (about a day) and they die away with half-life ln(2)/δBS

. IgM is produced at a rate
proportional to BS , is lost through binding with the vaccine and decays naturally (half-life
ln(2)/δAS

). We can see that if there is no V , BS and AS will decay to zero as expected.
For the long-term pathway, the generation of the vaccine–antibody complex is given by

dC

dt
= γV SV AS + γV LV AL − γCUDU

(
C

C + CC

)
− δCC, (4)

describing rate of C generation via vaccine binding with IgM and IgG, respectively, and loss
via uptake by unactivated DCs and natural decay (half-life ln(2)/δC). We note that we have
bundled vaccine–IgM and vaccine–IgG complex into a single variable; this seemed reasonable,
as properties of the two complexes are very similar. The equations for DC activation are

dDM

dt
= γV UDU

(
V

V + VC

)
− δDM

DM , (5)

dDF

dt
= γCUDU

(
C

C + CC

)
− δDF

DF , (6)

which describe in both cases the rates of generation from unactivated DCs and loss via natural
death (half-lives ln(2)/δD∗). The memory cells and IgG equations are

dT

dt
= βTMDM (t− τ2) + βTFDF (t− τ2) + βTV BTV BL + βTQQ − δTT, (7)

dBL

dt
= βBTT − δBL

BL, (8)

dAL

dt
= βBL

BL − γV LV AL − δAL
AL. (9)

The first equation descrsibes the net production rate of T-cells via activated DCs (after a delay
of time τ2), division in the presence of V and BL (the “booster” term), “tick-over” production
of T-cells dependent on past activation and natural death. The “booster” term in this equation
is at the heart of the long-term immunity response, here, T-cells will more rapidly reproduce
in response to any new intake of vaccine or virus; this process also requires the presence of
long-term B-cells and we have assumed the simplest kinetics to describe this interaction. We
further note, that in the presence of the vaccine and activated DCs, we expect the contribution
to T-cell production via the memory term βTQQ to be very much smaller than the first two
(first exposure with vaccine) or three (subsequent exposures) terms on the right-hand side. The
equations for BL and AL are similar to those of the short-term pathway, the only difference
being that BL is generated by T-cells. The variable Q describes is a measure of the total
amount of T-cell production via DC activation that has occurred in the past and, assuming a
a weighted linear dependence, is defined by

Q =
∫ t

−∞

(
θβTMDM (t̂− τ2) + βTFDF (t̂− τ2)

)
dt̂; (10)
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Parameter Interpretation
βBV Rate of Short-term memory B-cell generation due to vaccine
βBS

Rate of IgM production by Short-term B-cells
βTF Rate of T-cell generation via fc activated DCs
βTM Rate of T-cell generation via macropinocytosis activated DCs
βTV B Rate of T-cell generation via vaccine presence
βTQ “Tick-over” rate of T-cell generation
βBT Rate of Long term memory B-cell generation by T-cells
βBL

Rate of IgG production by Long-term B-cells
γV S Vaccine-IgM uptake rate
γV L Vaccine-IgG uptake rate
γV U Vaccine uptake rate by micropinocytosis
γCU Complex uptake rate by fc activated pathway
δV Decay rate of Vaccine (unstable-3 hrs, stable-6 hrs)
δBS

Death rate of Short term memory B cell (1 wk)
δAS

Decay rate of Short term memory antibody (IgM) (8 wks)
δC Decay rate of Antigen-Antibody complex (very short time)
δDM

Death rate of DM

δDF
Death rate of DF

δT Death rate of T cell (months)
δBL

Death rate of Long term memory B cell
δAL

Decay rate of Long term memory antibody (IgG) (8 wks)
θ Activated DC weight coefficient for tick-over T-call production

Table 2: Table of the model parameters

however, for computational convenience, we take the derivative

dQ

dt
= θβTMDM (t− τ2) + βTFDF (t− τ2). (11)

We observe from (7) that as V vanishes following exposure and eventually DM → 0 and
DF → 0, Q will become constant, Q∞ say, and hence in large time the level of T-cells will
settle to a “tick-over” level of T ∼ βTQQ∞/δT .

It is assumed that at t = 0 the vaccine is introduced and we impose the following initial
and past conditions

t < 0 : V = BS = AS = C = DF = DM = T = BL = AL = Q = 0, (12)
t = 0 : V = V0, BS = AS = C = DF = DM = T = BL = AL = Q = 0. (13)

2.4 Key parameters regarding questions 1-6 in the Introduction

Discussing the questions in turn.

1. Is the efficiency of capsid uptake from extracellular environment by specialised antigen
presenting cells (dendritic cells) influenced by the stability of the capsids?

• Efficiency of capsid uptake is dependent on its stability δV , i.e. the occupation
time of the vaccine, and the DC uptake rate directly (γV U ) and indirectly via the
complex pathway (which is governed by all parameters!).

2. Is the processing of the capsid proteins into short peptides influenced by the stability of
the capsids?
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• This is not considered in the model, at least not in such specific detail. This process
is in sense described by assuming that the activated DC decay rate, constants δDM

and δDF
, includes the deactivation of DC by processed capsid breakdown.

3. Is the magnitude of the T cell response influenced by the period of time antigen is retained
in dendritic cells?

• The occupation of activated DCs is governed by δDM
and δDF

. The effectiveness of
these cells to generate T-cells is directly governed by parameters βTM and βTF .

4. Overall, does capsid stability result in an increased specific T cell proliferative response
in antigen presentation assays?

• The parameter δV governs vaccine stability and this will have a knock on effect on
complex formation and subsequent DC uptake. In these assays, the other param-
eters are fixed and a survey of the effects of the stability can be investigated from
simulations using different values of δV .

5. How does antibody mediated uptake of FMDV capsids influence the subsequent B cell
and T cell responses?

• The rates of antibody mediated uptake are governed by parameters γV S and γV L.

6. Can the model be further developed to predict the response to a second immunisation
(booster)?

• This is straightforward. Defining t = T to be the time point of the booster, we
simulate the model as defined to t = T , then impose V (T ) = V (T−) + V1 and
continue the simulation assuming continuity of all the other variables at t = T .
Here V (T−) is V (t) as t → T−, though if the booster is administered a few weeks
after the initial inoculum, we would expect V (T−) ≈ 0, so in effect V (T ) = V1.

A further issue which is very straightforward to simulate is the level of the inoculation. Is it
possible to offset deficiencies in vaccine stability by injecting more vaccine? If so, how much?

2.5 Nondimensionalization

The customary first step in an analysis of a new model is to non-dimensionalise the system
of equations in order to (1) reduce the number of parameters and (2) remove the units of the
variables and parameters so that the relative magnitudes of the terms can be compared directly
and systematically, which can help identify the important underlying mechanisms that govern
the model results. The change in events following inoculation of the vaccine appears to occur
over 7 days, which is roughly the half-life of IgM and we rescale time as follows

t =
t̂

δBS

,

where the hatted variable here and those that follow are the non-dimensional versions of the
original variables. For the dependent variables we write

V =
δ3BS

βBV βBS
γV S

V̂ , C =
δ3BS

βBV βBS
γV S

Ĉ, BS =
δ2BS

βBS
γV S

B̂S , AS =
δBS

γV S
ÂS ,

T =
DUγCUβTF

δ2BS

T̂ , BL =
DUβBTγCUβTF

δ3BS

B̂L, AL =
DUβBL

βBTγCUβTF

δ4BS

ÂL,

DM =
DUγV U

δBS

D̂M , DF =
DUγCU

δBS

D̂F , Q =
DUγCUβTF

δ2BS

Q̂,
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and the non-dimensional parameters are defined as follows

δ1 =
δV
δBS

, δ2 =
DUγV UβBV βBS

γV S

δ4BS

, δ3 =
δC
δBS

, δ4 =
δDF

δBS

, δ5 =
δDM

δBS

, δ6 =
δAS

δBS

,

δ7 =
δBL

δBS

, δ8 =
δAL

δBS

, δ9 =
δT
δBS

, δ10 =
δ2BS

γV S

βBV βBS

, δ11 =
βTMγV U

βTFγCU

δ12 =
DUγCUβBV βBS

γV S

δ4BS

, δ13 =
DUβBL

βBTγCUβTFγV L

δ5BS

,

δ15 =
γV Lδ

2
BS

βBV βBS
γV S

, δ16 =
DUβBTγCUβTFβTV B

δBS
βBV βBS

γV S
, δ17 =

βTQ

δBS

V̂C =
VCβBV βBS

γV S

δ3BS

, ĈC =
CCβBBV

βBS
γV S

δ3BS

, τ̂1 = δBS
τ1, τ̂2 = δBS

τ2,

V̂0 =
V0βBV βBS

γV S

δ3BS

.

Dropping the hats for clarity, the non-dimensional system of equations are

dV

dt
= −δ1V − V AS − δ2

(
V

V + VC

)
− δ13V AL (14)

dBS

dt
= V (t− τ1)−BS (15)

dAS

dt
= BS − δ6AS − δ10V AS (16)

dC

dt
= V AS + δ13V AL − δ3C − δ12

(
C

C + CC

)
(17)

dDM

dt
=

(
V

V + VC

)
− δ5DM (18)

dDF

dt
=

(
C

C + CC

)
− δ4DF (19)

dT

dt
= δ11DM (t− τ2) +DF (t− τ2)− δ9T + δ16TV BL + δ17Q(t− τ2) (20)

dBL

dt
= T − δ7BL (21)

dAL

dt
= BL − δ8AL − δ15V AL (22)

dQ

dt
= θδ11DM +DF , (23)

subject to the dimensionless initial and past conditions

t < 0 : V = BS = AS = C = DF = DM = T = BL = AL = Q = 0, (24)
t = 0 : V = V0, BS = AS = C = DF = DM = T = BL = AL = Q = 0. (25)

3 Results

Using the mathematical model it is possible to explore the range of behaviours that it exhibits
for a set of biologically plausible parameters. The “standard” set of parameters are given in
Table 3. Figure 3 shows the dynamical response of the principal model variables following
a single vaccination event at time t = 0. Plots are shown for two different vaccine capsid
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Parameter Value Parameter Value Parameter Value
V0 10 CC 0.1 VC 7
τ1 0.14 τ2 0.57 Tboost 8
δ1 10/20 δ2 1 δ3 1
δ4 5000 δ5 3 δ6 0.6
δ7 1 δ8 4 δ9 1
δ10 0.007 δ11 0.1 δ12 0.14
δ13 0.14 δ15 0.2 δ16 18000
δ17 0.05 θ 1

Table 3: Table of dimensionless values used in the simulation that produced the results shown
in Figure 6; the values used in Figures 3 and 4 are mostly the same. The two values for δ1
correspond to the stable (δ1 = 10) and unstable (δ1 = 20) cases.

stabilities (red - “stable”, blue - “unstable”). Overall, it can be seen from Figure 3 that
the model is capable of producing acceptable dynamic behaviours for the variables. Vaccine
concentration declines rapidly in the days immediately following the vaccination event whereas
the fields corresponding to the immunological variables exhibit longer-time-scale responses.

3.1 Effects of vaccine stability

Some key features are worthy of note:

• Capsid stability has a large impact on the activated dentritic cell levels depending upon
the mechanism by which antigen is ingested by the cell. Unstable vaccine is taken up
much less efficiently by the fc receptor route, whereas macropinocytosis is less affected by
vaccine stability (see plots for DF and DM ). There is also a corresponding pronounced
effect of capsid stability on the antigen-antibody complex concentration (plot for C).

• The short-term and long-term B cell responses behave as expected with the short-term
response peaking several days after the vaccination event and the long-term response
peaking after weeks have passed (see plots for BS and BL).

• Short and long-term antibody responses have the appropriate dynamical responses (see
plots for AS and AL). Moreover, whereas the short-term antibody response is imme-
diate, the long-term antibody response only begins to take-off at around 4 days after
the vaccination event. This delay effect is also seen in the response of the T dependent
antibody responses [7]. The model indicates that vaccine stability might not have a pro-
nounced impact on the timing of the T cell response, though it will have an effect on its
magnitude.

Each of the above features are supported qualitatively by experimental studies of immune
responses to FMD vaccine thereby giving confidence that the basic mathematical model cap-
tures the most significant interactions that are generated following vaccination with antigen
capsids of differing stability.

In terms of the questions posed in Section 1, we can see in response to question 1 that the
efficiency of capsid uptake is quite strongly influenced by the capsid stability. This is evident
from the plots of DF and DM . Also in response to question 4 it can be seen how capsid
stability influences the T cell response from the plot of T .
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Figure 3: Dynamic behavior of all variables in response to single vaccination at t = 0 over
the time course of 8 weeks. Stable (red line) and unstable (blue line) vaccine correspond to
δ1 = 10 and δ1 = 20, respectively. Note different time scale for the Vaccine.

3.2 Effects of higher dose vaccine

As an extension of the basic simulation above, we investigated whether it is possible to mitigate
deficiencies in vaccine stability by injecting a higher dose of vaccine. It is a question of some
practical importance.

We repeated the simulation for 4 different types of vaccination. Firstly, we did one for
stable vaccine (δ1 = 10) and another for unstable vaccine (δ1 = 20), exactly as in Fig.1, with
dose of V0 = 10. Two further simulations were done for unstable vaccine though now with
increased inoculation doses V0 = 30 and 50 to see if this can replicate the responses that are
stimulated by the stable vaccine with V0 = 10.

Under the condition of our limited set of parameters, a 3-fold increase in the inoculation
dose of unstable vaccine shows similar dynamics as the stable one for BL, AL, and T . It shows
that the effectiveness of vaccination can be recovered by enhancing the inoculation dose of an
unstable vaccine candidate. This mitigation is achieved mainly by higher or similar DM level
for stable (red) and unstable with increased dose (blue dotted and dash dot). On the contrary,
higher levels of BS and AS for 3-fold more unstable vaccine (blue dash dot) compared to that
for stable vaccine (red) does not lead to high C and thus DF concentration. This means
that the unstable but increased dose achieves similar vaccination effect as the stable one by
producing more DM by macropinocytosis. Note also that the difference in scale for DM and
DF , i.e., the macropinocytosis may play bigger role to attain vaccination effects. The similar
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levels of C and DF as for stable vaccine is attained by 5-fold more inoculation dose for unstable
vaccine.

3.3 Booster effect

Motivated by question 6 in Section 1, it is straightforward to extend the above analysis to
the case where there is an additional booster vaccination which takes place some weeks after
the initial vaccination event. When this happens the vaccine antigen in the booster can im-
mediately interact with the pre-existing T cell population that was generated from the initial
vaccination event thereby generating a faster immunological response. (This is essentially the
memory effect in immunology). Using the model it is possible to look at the effect of vaccine
stability on the response of the immune system to additional vaccination events.

The evolution of the model variables’ response to primary and secondary vaccinations are
shown in Figure 5 for a stable (red, δ1 = 10) and unstable (blue, δ1 = 20) vaccine. The initial
vaccination event occurs at t = 0 and a second vaccination occurs at a t = 8. As expected the
immune response to the more stable vaccine is much more pronounced than that of the unstable
case, as is illustrated from the experimental data shown in the bottom two graphs of Figure
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Figure 4: Comparison of system behaviors with different level of inoculation at t = 0 over
the time course of 8 weeks. Stable (red line) and unstable (blue lines) vaccine correspond to
δ1 = 10 and δ1 = 20, respectively. Stable vaccine (red) is introduced with V0 = 10. Unstable
vaccines (blue) are introduced with V0 = 10 (solid), V0 = 30 (blue dash dot), and V0 = 50
(dotted), respectively.
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Figure 5: Dynamic behavior of all variables in response to an initial and booster vaccination
at t = 0 and t = 8 over the time course of around 16 weeks. Stable (red line) and unstable
(blue line) vaccine correspond to δ1 = 10 and δ1 = 20, respectively.

6. The key difference is that there is a much more rapid rise and considerable enhancement in
T-cell levels following the booster of the stable vaccine, peaking at approximately 4 times the
level of that after the primary vaccination. As a consequence, the levels of long-term B-cells,
IgG, vaccine-IgG complex and fc activated DC cells are also significantly enhanced. We note
further, that there is relatively little difference in the short-term response to stable vaccine.
Examination of the response to the unstable vaccine shows little difference between the primary
and secondary vaccinations, though, there is a notable increase in vaccine-IgG complex and fc
activated DC cells after the second vaccination, however, the peak is lower than that of the
stable case after the first vaccination. Nevertheless, such a rise in levels of C and DF does
indicate that there was a low level of activation of the long-term response following the first
vaccination, and further boosts of the unstable vaccine may eventually provide the desired
immunity in the animal.

Figure 6 shows a comparison of anti-body levels (IgM = red, IgG ×500 = blue) between the
model results (top graphs) and experimental data from 6 month old calves (bottom graphs) in
response to two inoculations of stable (left, using δ1 = 10) and unstable (right, using δ1 = 20)
vaccines. In the experiments, the booster was administered 58 days after the initial inoculum,
which is approximately t = 8 in simulated time (indicated by the vertical lines in the top
graphs). The first observation is that the model agrees qualitatively well with the experimental
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Figure 6: Comparison of the model solutions with experimental data to the first vaccination
(t = 0) and a booster vaccination at simulated time t = 8 and experimental time of about
58 days. In all graphs IgM levels are shown in red and IgG levels in blue; the values of IgG
have been multiplied by 500 for clarity. The plots on the left and the right correspond to
the stable (δ1 = 10) and unstable (δ1 = 20) vaccine cases, respectively. The vertical lines in
the top two graphs indicate the time point of inoculation. The data shown in the bottom
two graphs were obtained from 6 month old two calves, one immunised with a stable vaccine
TNP-CGG in Quill A adjuvant (left) and the other with the unstable form TNP-FICOLL in
Quill A adjuvant (right).

data in both the stable and unstable cases. In particular, the desired significant jump in IgG
levels following the second vaccination of the stable vaccine is illustrated well by the model.
Examining the graphs in more detail, we can see that following the booster vaccination, the
model suggests that the IgM is about the same following the initial vaccination. This is in
apparent contrast with the experimental data which suggest lower, marginally in the unstable
vaccine case, IgM response following the second vaccination. However, in both the model and
experiment, IgG levels appear slightly enhanced following the booster, though, once again, very
marginal in the unstable case. Further examination shows that the experimental antibody
levels are measured to be 20-60 times higher in the stable vaccine case, whilst the model
suggests between 2-10 times higher. This may suggest that half-life of the unstable vaccine is
somewhat less than half that of the stable one. Nevertheless, the model is largely consistent
with these empirical observations, but where our model appears to depart qualitatively from
the experimental picture is that (for the albeit limited parameter regime we have explored)
the IgM antibody response is generally larger than that seen after the initial vaccination.

4 Discussion

The study group was asked to consider number of different, but related, questions. The
development of a model has helped to elucidate some of these as well as offering a clear way
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to proceed in the future. In some cases the process of constructing a model, building on
physically realistic constructions, has proposed answers, while others have been inferred from
the model output and simulations. Implicit in the use of a mass action model is the assumption
that responses are influenced by the length of time factors are present. It is perhaps therefore
inevitable that capsid stability, as modelled here, has a direct impact on the T cell proliferation
response.

The model includes two distinct pathways: short term B-cell production and longer pro-
duction of target T-cells. Analysis of these produces the behaviour expected from experimental
observations, including the timing of the peak in the long and short term responses. The ex-
plicit inclusion of clearly identified parameters which governing specific aspects of the system,
such as antibody mediated uptake, allow for the influence of each of these to be explored. There
was not sufficient time for this during the study group week, but offers a clear and useful way
to exploit and extend what has been achieved thus far. Of primary interest is understanding
the dynamic response of the system to the decay rate of vaccine capsid δV .

Results suggest that vaccine stability may not have a pronounced impact on the timing
of the T cell response, but will affect its magnitude. Future work will look in more detail
to how these predictions compare with experimental evidence that vaccine produced from
different virus serotypes can differentially stimulate T cell responses. The system achieves
good qualitative agreement with empirical observations of the system response to booster
vaccine doses, and suggests that stable vaccine benefit more from multiple doses.

The model also predicts that high decay rate can be compensated with an increase in dose,
but this is perhaps not surprising for mass action model. Here we have studied the effect
of vaccine decay rate on its uptake and the subsequent dynamics, and assume that this is
representative of vaccine stability. The validity of this assumption will be considered in greater
detail in future work. We have not explicitly address antigen processing and presentation, but
there is potential for the system to be extended to incorporate this, building on existing work
in this area (e.g. [1, 2]).
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