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1 Introduction

1.1 The Problem Presented to the Study Group

The primary components of healthy living are recognised as a good diet, plenty of exercise,
avoiding smoking and reducing stress. These measures are largely aimed at improving the
health of the arterial system. The arterial system is much more than a set of pipes, it is an
extraordinarily well-regulated blood delivery network capable of responding within a few seconds
to challenges such as an altered body position, or a change in demand. There is rapidly growing
interest in measurement techniques that can assess the rapid dynamics of the arterial system.
These may enable deteriorating function to be identified before it becomes problematic. Much
of the research in this area requires a continuous but non-invasive measure of arterial pressure.

Arterial blood pressure may be measured continuously by two different non-invasive tech-
niques; the FinapresTM and Colin R© CBM-7000 Radial Artery Tonometer, both described below.
The Study Group was asked to explore explanations for the disagreement in output of the two
techniques. In particular, by modelling the behaviour of both devices and their vascular response
to the provocation.

1.2 Description of the Finapres

We first describe the Finapres, which uses infrared light transmission to measure arterial pres-
sure in the finger (Penaz, 1973; Wesseling et al., 1995; Imholz et al., 1998). Since the wavelength
of light used is primarily absorbed by haemoglobin, monitoring light intensity fluctuations trans-
mitted through the finger provides information about the area of the finger cross section occu-
pied by blood. The volume of the blood is related to pressure (see Langewouters et al., 1986;
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(a) (b)

Figure 1: The Finapres. (a) A photograph showing the cuff placed under a finger. During
operation the cuff is wrapped firmly around the finger and held in place by velcro. (b) A
cross-section of the finger showing how the Finapres operates.

Drzewiecki et al., 1996) , and so we are in fact able to track blood pressure changes. It is this
principle that is exploited by the Finapres.

The Finapres, shown in figure 1, uses a cuff around a finger that can apply a varying pressure.
The applied cuff pressure pext is varied in time so that the light intensity is maintained at a
constant value. If the light intensity increases, this indicates a drop in blood volume within the
cuff. In response, the cuff pressure is reduced to allow more blood to flow, and hence the light
intensity decreases back to the target value. The cuff pressure applied to do this is related to
the blood pressure.

After securing the cuff around the patient’s finger, the Finapress calibrates itself as follows:

1. The cuff is inflated to some minimum pressure pext, below normal blood pressure.

2. The light intensity I(t) is measured over several blood pulses, and the amplitude of the
oscillations in I(t) is recorded.

3. The cuff pressure pext is increased in small increments, and step 2 is repeated for each
value of pext.

4. The cuff pressure that maximises the amplitude of the oscillations in light intensity is
found, and recorded as p∗ext.

5. Holding the cuff at fixed pressure p∗ext, the mean light intensity over several heart cycles
is recorded as I∗.

This completes the calibration procedure. The device now dynamically varies pext in order
to keep the light intensity fixed at I∗. The value of pext is output as the patient’s blood pressure.

The calibration procedure is designed to make the apparatus as sensitive as possible to light
changes, and hence to detecting pressure changes. Crucially, it is also hoped that the calibration
is such that the cuff pressure applied is equivalent to the blood pressure itself. This assumption
is a possible source of error, and one aim of the study is to investigate the relationship between
the blood pressure and the cuff pressure, through mathematical modelling.

1.3 Description of the Tonometer

The Colin CBM-7000 tonometer estimates the pressure in the radial artery at the wrist, see for
example Kemmotsu et al. (1991); Sato et al. (1993); Weiss et al. (1996). A line of piezoelectric
crystals lying perpendicular to the axis of the artery is then pressed against the skin over the
radial artery. These are held in place with a constant force, and the oscillations in their position
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(a) (b)

Figure 2: The Colin Radial Artery Tonometer. (a) A photograph of the device in operation.
The pressure transducers are located in the central block, and the straps at either end are part
of a separate splint designed to keep the wrist still. (b) A cross-section of the wrist showing
how the device works.

are measured. A photograph of the device in operation and a sketch showing a cross-section of
the wrist are shown in figure 2.

A separate oscillometric cuff over the upper arm is used to find the systolic and diastolic
arterial pressures at the start of the measuring period. These maximum and minimum values
are then used to calibrate the continuous pressure readings from the tonometer.

Therefore the actual readings from the transducers are not important, as long as they can be
mapped (presumably linearly) on to the pressure scale. The tonometer can be set to periodically
re-calibrate itself using the cuff. However, in the experiments considered in this study, the re-
calibration feature was deliberately deactivated.

1.4 Discrepancies in experiments

Two experiments have exposed differences in the measurement of the two devices. The first of
the experiments is reported by Birch & Morris (2003). A cuff was placed around the patients’
thighs and left for 3 minutes 20 seconds. Due to vasodilation, this caused the vessels in the
legs to dilate in order to try to increase blood flow there. Finapres and Tonometer readings
were taken continuously and simultaneously. The thigh cuffs were rapidly deflated and pressure
readings taken for approximately thirty seconds subsequently. After cuff deflation, the leg
vessels filled with blood, venous return and cardiac output fell, and the upper body arterial
pressure dropped. After approximately ten seconds, the pressure began to return to its normal
value, as shown in figure 3.

The second of the experiments involved enclosing the lower half of the body in a pressure
chamber and applying a negative pressure that varied sinusoidally with time.1 Birch (2007)
describes the different readings that were recorded by the two devices, as shown in figure 4.

It is not known for either experiment which (if either) of the two readings is correct, nor
what the reason is for the discrepancy. One of the aims of this work therefore, is to lay the
foundation for models that may be used to test possible explanations. There are a few obvious
possibilities:

• In both cases the Finapres readings fall lower than those of the Tonometer during a
period of induced low pressure. This may be because the blood pressures differ between
the arteries, leaving the possibility that both readings are correct. When the body is put
under stress due to low blood pressure, the peripheral vessels vasoconstrict in order to
restrict blood supply. The aim of the body is to increase blood pressure elsewhere, in

1This technique has previously been used for other purposes, e.g. Birch et al. (2002).
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Figure 3: Average blood-pressure measurements from the tonometer and Finapres for the
leg-cuff experiments of Birch & Morris (2003). c© IOP Publishing.
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Figure 4: Average blood-pressure measurements from the tonometer and Finapres for the
lower-body pressure chamber experiments of Birch (2007). c© Lippincott Williams & Wilkins.
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particular in the vital organs, at the expense of the less-important periphery. This may
account for a lower pressure in the finger artery.

• The Finapres measurement assumes that the cuff pressure needed to maintain light in-
tensity equals the arterial blood pressure. There are several possible reasons why this
assumption may be incorrect:

– The cuff pressure may not be uniformly transmitted through the finger, and so the
effective pressure on the artery caused by the cuff may not equal the cuff pressure.

– The cuff pressure at which the maximum amplitude of variation in transmitted light
is observed may not equal the mean arterial pressure.

– The Finapres works on the assumption that the only blood under the cuff is in the
artery, since the vein and other vessels will be closed due to their lower pressures.
However, blood continues to pass through the artery during Finapres use, leading to
an increase in blood volume in the capillaries at the end of the finger. Consequently
the pressure there begins to rise. Eventually the venous pressure will become com-
parable with arterial pressure, at which point blood will flow back along the vein.
This flow and its implications for the Finapres readings are not well understood.

• For the tonometer:

– The initial calibration is done using an oscillometric cuff, which has errors of up
to approximately 15% (O’Brien et al., 2001). Thus, however accurately subsequent
readings are taken, the accuracy of the Tonometer output is limited.

– The Tonometer manual does not describe how it uses the pressures found during
calibration to interpolate its readings from the crystal and hence calculate the time-
dependent pressures (the simplest way would be linear interpolation). It may be that
the interpolation used is not well-justified. Moreover, if the range of pressures during
the cycle changes significantly, assumed interpolation may not extend well outside
the initial range.

– Physiological changes (e.g. a stiffening of the arterial wall) may mean that a certain
arterial pressure gives a different transducer signal at a later time than it did initially.

It is also not well understood how inter-patient variations affect the readings. In particular,
the distribution and type of fat and muscle in the patient would seem to be important for both
devices. For the Tonometer it would affect the elastic properties of the wrist flesh, whilst for
the Finapres the effect on the transmitted light intensity is difficult to interpret. Many patients
are elderly, and another important factor to consider is the effect of arterial stiffness, which
tends to increase with age. If the stiffness affects the accuracy of either reading, it may have
important implications.

2 Tonometer Models

In this section, we develop two models for the tonometer behaviour; a simple spring-and-dashpot
model, and a more advanced viscoelastic slab model. Our objective here is to determine whether
or not the tonometer is likely to give a true measure of blood pressure. We do this by construct-
ing a mechanical model and comparing the input (the true blood pressure) with the output (the
blood pressure as measured by the tonometer). Further, we ask whether or not the readings
given by the tonometer model are sensitive to changes in the strength of the arterial walls.

5



F4 = −k4x4

M

S1 F1 = −k1x1

fixed

F1 = −ǫ sin ωt

m

S4

D2

F2 = −µẋ2
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Figure 5: A schematic of the spring-and-dashpot model of the radial artery tonometer that is
described in §2.1.

2.1 Spring-and-dashpot model

We first consider a simple spring-and-dashpot system to mimic the constituent blood, artery
wall and tissue components of the biological system. A schematic of the model is shown in
figure 5.

We consider motion between two rigid plates, where the upper plate represents the meter
that measures the pressure and the lower plate is moved in order to apply a pressure to the
vessel wall above. The upper plate is fixed in space and we prescribe oscillations of the lower
plate about its equilibrium position such that we obtain a given force F1 = −ǫ sin (ωt) in the
spring (S1) representing the pulsating blood pressure. The wall of the radial artery expands in
response, and the tissue between the wall of the artery and the tonometer deforms and dissipates
energy. The wall and tissue are modelled as a spring (S2) and dashpot (D3) placed in parallel.
The spring constant k3 depends on time to model the changing stiffness of the artery wall. The
pressure transducers are modelled as a spring (S4) with a high spring constant k4.

The governing equations are obtained by balancing forces at each mass-point, giving

m

(

d2x4

dt2
+

d2x2

dt2

)

= −µ
dx2

dt
− k3x3 + k1x1 , (1)

M
d2x4

dt2
= −k4x4 + k3x3 + µ

dx2

dt
. (2)

We also have that x2 = x3 from the parallel configuration, and that the forcing is given by

k1x1 = ǫ sin (ωt) . (3)

The initial conditions at t = 0 are chosen, for simplicity, to be

x2 = 0 , x4 = 0 ,
dx2

dt
= 0 ,

dx4

dt
= 0 , (4)

and the parameter values assumed are given in table 1. To model the effect of a stiffening artery
wall, we also consider using a time-dependent spring constant for S3:

k3 =
1

2

[

1 + tanh

(

t − t0
∆T

)]

(k31 − k30) + k30 . (5)
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Parameter Symbol Typical Value

Forcing frequency ω 0.5
Forcing amplitude ǫ 0.2
Lower mass m 1
Upper mass M 2
D2 Damping coefficient µ 1
S1 Spring constant k1 1
S3 Spring constant k30 1
S3 Spring constant k31 10
S4 Spring constant k4 5 × 103

Stiffening time t0 0
Stiffening timescale ∆T 2

Table 1: Dimensionless parameter values used in the spring-and-dashpot tonometer model of
§2.1.

The system (1)–(4) was solved numerically using standard library routines. The results
indicated that, after an initial period of transient behaviour (induced by the choice of boundary
conditions), the tonometer readings compare well with the real blood pressure. Figure 6 shows
the transient behaviour and transition to a periodic oscillatory state, with k3 as defined in (5),
and the parameters given in table 1.

It is observed that when k4 is large, the response of the tonometer is insensitive to the
choice of k3, even if k3 varies with time. This is an important finding, since it confirms that the
tonometer is likely to be an equally accurate method of blood pressure measurement in a wide
variety of patient types.

It is further observed that the time for the system to settle to a steady-state after a change
in blood pressure depends on the parameter values chosen. Since the parameter values remain
largely unknown, it is not possible to comment on how long the tonometer might take to
accurately respond to changes in blood pressure.

We conclude that the tonometer is likely to be an accurate device for measuring blood
pressure, but that a two-dimensional elastic with a prescribed force along the bottom surface
would be a more accurate model.

2.2 Linear Visco-Elastic Slab

As an improvement over the previous spring-and-dashpot model, we model the skin, artery
wall, and other tissue between the radial artery and the tonometer as a single uniform slab
of visco-elastic material, with depth h and infinite extent horizontally. We consider a strictly
two-dimensional problem in which all variables are uniform in the y direction, and take the
upper and lower boundaries to be the planes z = h and z = 0. See figure 7.

The blood pressure in the artery is denoted p(t) and the width of the squashed artery in
contact with the visco-elastic layer is 2a. We assume that the normal stress on the upper surface
is the pressure that is read by the tonometer. The displacement field is given by u, so the strain
tensor is

eij =
1

2

(

∂ui

∂xj
+

∂uj

∂xi

)

. (6)

We assume that the material behaves linearly, and use a Kelvin–Voigt model, whereby the
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Figure 6: Graphs to compare blood pressure with tonometer response for the spring-and-
dashpot model. (a) Transient behaviour. (b) Transition to periodic behaviour. (c) Periodic
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Figure 7: A sketch of the geometry for linear visco-elastic tonometer model.
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stress tensor σ is the sum of separate elastic and viscous components. We therefore write

σij =
(

λekkδij + 2µeij

)

+ 2η

(

−1

3

∂ekk

∂t
δij +

∂eij

∂t

)

, (7)

where λ and µ are the Lamé moduli from linear elasticity, and η is the Newtonian viscosity.
The momentum equation is then given in the usual way by relating the rate of change of

inertia to the divergence of the stress:

ρ
∂2uj

∂t2
=

∂σij

∂xi
(8)

This leads to the equation

ρü = (λ + µ)∇(∇·u) + µ∇2
u − 1

3
η∇(∇· u̇) + η∇2

u̇ , (9)

where dots are used to denote time derivatives.
We apply a rigid boundary condition on the upper boundary, since the tonometer is pressed

onto the skin there, and motion of the pressure transducers is minimal. Hence

u = 0 on z = h. (10)

At the lower boundary we assume that the artery exerts a uniform (but temporally varying)
pressure p(t) over the contact area of width 2a. Away from the artery the lower surface is
stress-free. We therefore have:

σ · ẑ =

{

p(t)ẑ : |x| < a
0 : |x| > a

(11)

The equations are linear in u = ux̂ + wẑ, and we solve them by taking the double Fourier
transform with respect to x and t. (The conjugate transform variables are k and ω respectively.)
This leaves a pair of coupled second-order ordinary differential equations in z for the transformed
variables ũ(k, z, ω) and w̃(k, z, ω). These are readily solved, but it would appear that the inverse
transforms can only be computed numerically. Nevertheless, it should prove instructive to
examine the transform solutions, to see how the layer depth h, and visco-elastic parameters λ,
µ, and η, affect the solution.

Two relevant limits that will result in simpler (but still non-trivial) problems to solve are:

1. The limit a/h → 0. In this case, the lower boundary condition reduces to a point force,
with

σ · ẑ = 2a p(t) δ(x) ẑ on z = 0 (12)

2. The limit ω2ρ ≪ max{λ, µ, ωη}. Then the inertial term ρü may be neglected. This
corresponds to the induced motions being much smaller than the speed of internal waves
in the visco-elastic layer.

3 Finapres Models

3.1 Cuffed Artery Model

To model the Finapres, we first consider the simple situation depicted in figure 8(a). The
blood enters through the artery, and, after filtering through a system of capillaries, exits via a
vein. The Finapres cuff surrounds the artery and vein, exerting pressure on both. As explained
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Figure 8: (a) An idealised sketch of the Finapres and artery system. (b) A simplified system,
replacing the capillaries with a jump condition. The Finapres exerts compression on both the
vein and the artery.
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Figure 9: A sketch of the highly simplified cuff–artery system modelled, and non-
dimensionalised pressures and stresses.

previously, it uses a system involving varying the pressure in order to keep the intensity of light
transmission constant.

This system is simplified both by removing the capillaries and by considering just the vein
and the artery. This is illustrated in figure 8(b). The capillaries in this case are replaced by a
“jump condition” in the pressure.

As a first attempt to understand the workings of the Finapres, we simplify the system even
further and consider the situation where there is an artery only, as shown in figure 9.

The flexible tube has length L, internal pressure p(x) and an external pressure pext applied by
the cuff. The upstream pressure maintained by the heartbeat provides the upstream boundary
condition

p(0) = P ∗(1 − ǫ cos ωt) , (13)

and we assume a constant downstream pressure

p(L) = P ∗pL (14)

The varying external pressure applied by the cuff is written as

pext = P ∗σ(t) . (15)

We derive a simple set of governing equations for p(x) as follows, by introducing the cross-
sectional area A(x, t) of the tube and the volume flux Q(x, t) of blood.
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p − pext

Figure 10: Tube laws linking the transmural pressure p− pext to the cross-sectional area A of
a tube. (a) Typical behaviour of an elastic artery (see, e.g. Langewouters et al., 1986). (b) The
idealised linear tube law (18) used in the simple Finapres model.

Conservation of mass yields
∂A

∂t
+

∂Q

∂x
= 0 . (16)

Assuming viscous drag dominates inertial effects (i.e. the Reynolds number is small),
Poiseuille flow in a circular tube gives

Q = − A2

8πµ

∂p

∂x
. (17)

In this simple model we neglect errors caused by deviations from a circular cross-section.
A ‘tube law’ is used to describe the relationship between the cross-sectional area, and the

pressure difference across the tube walls (see figure 10). We take the simple linear expression

A = A0 + k(p − pext) . (18)

Observe that k−1 is a measure of the stiffness of the tube wall. As k → 0 the wall stiffens so
that large pressure changes are required to obtain any significant change in area.

Finally, the Finapres operates by varying pext to keep the light intensity I constant. We
assume that this equates to keeping the artery at a constant volume V , i.e.

∫ L

0

A(x, t) dx = V . (19)

To reduce the number of parameters, we non-dimensionalise the equations. We scale lengths
with L and time with ω−1, writing

x = Lξ , and t = ω−1τ . (20)

We scale pressure with the average upstream pressure P ∗, and also introduce a non-dimensional
transmural pressure difference

θ(ξ, τ) =
p − pext

P ∗
=

p

P ∗
− σ . (21)

After non-dimensionalising, we get:

∂θ

∂τ
= D

∂

∂ξ

(

(1 + K θ)2
∂θ

∂ξ

)

, (22)
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Parameter Symbol Typical Value

Young’s modulus E 104 − 106 Nm−2

Wall thickness h 0.5 × 10−3 m
Mean arterial radius a 3 × 10−3 m
Blood density ρ 1 × 103 kg m−3

Blood viscosity ν 4 × 10−6 m2 s−1

Mean blood velocity U 1.5 × 10−1 m s−1

Table 2: Parameters values used in the cuffed finger artery model. (Arterial properties from
Langewouters et al. 1986.)

∫

1

0

θ dx = V , (23)

where

K =
kP ∗

A0

, (24)

D =
A2

0

8πµkL2ω
, (25)

V =
1

P ∗k

(

V

L
− A0

)

. (26)

The boundary conditions are:

θ(0, τ) = 1 − ǫ cos τ − σ(τ) , (27)

θ(1, τ) = pL − σ(τ) . (28)

For a well-posed problem, we also require an initial condition, i.e. θ(ξ, 0).
We now go on to consider wavelength estimation in §3.2, before solving the model, with

series expansions in §3.3 and §3.4, and numerically in §3.5.

3.2 Wavelength estimation

In order to estimate the characteristic wavelength of a pressure pulse wave, we refer to the
Moens–Korteweg velocity c0, which describes propagation of linear waves in a compliant tube
filled with inviscid liquid (see Fung, 1993). This velocity is given by

c0 =

√

E h

2 a ρ
, (29)

where E is the Young modulus of elasticity, h is the wall thickness, a is the reference arterial
radius, and ρ is the density of the blood.

Table 2 gives typical parameter values for the digital arteries. From these values, and
assuming a cuff length of L = 0.02m, we estimate the Reynolds number as Re = aU/ν = 112.5,
and the Womersley number as α = a/

√
νT = 1.5. Our model for the Finapres device assumes

that the aspect ratio (a/L ∼ 0.1) of the arterial segment is small enough to neglect the inertial
effects of the fluid.

Based on the data from table 2, we estimate the pulse wave velocity (29) as c0 ≈ 1m s−1.
The typical period of pulse wave is T ≈ 1 s. Thus the length of the wave is about Λ ≈ 1m,
which is much bigger than the length L of the cuff.
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Taking advantage of the small parameter ε = L/Λ, it is possible to introduce a slowly-
varying spatial variable X = ε ξ. After completing the change of variables in (22) and the
integral constraint (23), we obtain

∂θ

∂τ
= ε2

D
∂

∂X

(

(1 + K θ)2
∂θ

∂X

)

, (30)

V =
1

ε

∫ ε

0

θ dX ≃ θ(0, t) +
ε

2

∂θ(0, t)

∂X
. (31)

We conclude that θ = const ≈ V , correct to O(ε).

3.3 Expansion for ǫ ≪ 1

We begin by considering the case ǫ ≪ 1, and postulating a series expansion. We use the standard
technique of working with a complex version of the problem, where the physical solution is taken
to be just the real part of each of the variables. Accordingly the boundary condition (27) is
rewritten as

θ(0, τ) = 1 − ǫeiτ − σ(τ) . (32)

For simplicity, we take pL = 0 in the other boundary condition, so

θ(1, τ) = −σ(τ) . (33)

We then adopt the following ansatz for the leading and first-order terms:

θ(ξ, τ) = θ̄(ξ) + ǫθ′(ξ)eiτ + O(ǫ2) , (34)

σ(τ) = σ̄ + ǫσ′eiτ + O(ǫ2) . (35)

We substitute these expressions into the governing equation (22), integral constraint (23) and
boundary conditions (32)–(33). At leading order in ǫ we obtain

D
∂

∂ξ

[

(1 + K θ̄)2
∂θ̄

∂ξ

]

= 0 , (36)

∫

1

0

θ̄(ξ) dξ = V , (37)

θ̄(0) = K (1 − σ̄) + 1 , (38)

θ̄(1) = −K σ̄ + 1 . (39)

The general solution to (36) can be written as

θ̄(ξ) =
1

K

[

(

A3ξ + B3(1 − ξ)
)1/3

− 1

]

, (40)

where A and B are arbitrary constants. The boundary and integral conditions then imply

A = −K σ̄ + 1 , (41)

B = K (1 − σ̄) + 1 , (42)

K V =
3(A4 − B4)

4(A3 − B3)
− 1 . (43)
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These three equations are sufficient to solve for the three unknowns A, B, and σ̄. Eliminating
A and B (and cancelling a factor of A−B) we obtain a cubic equation for σ̄. In principle, this
is soluble, and hence we can recover the complete solution.

Turning now to the O(ǫ) terms, we have

iθ′ = D
∂

∂ξ

[

(1 + K θ̄)2
∂θ′

∂ξ
+ 2(1 + K θ̄)K θ′

∂θ̄

∂ξ

]

, (44)

∫

1

0

θ′(ξ) dξ = 0 , (45)

θ′(0) = −1 − K σ′ , (46)

θ′(1) = −K σ′ . (47)

The governing equation (44) contains a perfect derivative and can be re-written as

iθ′ = D
∂2

∂ξ2

[

(1 + K θ̄)2θ′
]

. (48)

We now make a double substitution to transform the equation to a standard form. We introduce

X = (1 + K θ̄)2 and Y = θ′X1/4 . (49)

It may be checked from (40) that

∂X

∂ξ
= 2(1 + K )K

∂θ̄

∂ξ
=

2(A3 − B3)

3X1/2
. (50)

On making the substitution we obtain

X2
∂2Y

∂X2
+ X

∂Y

∂X
− (λ2X2 + ν2)Y = 0 , (51)

where

ν =
3

4
, λ =

3(1 + i)

2
√

2D(A3 − B3)
. (52)

This is a modified Bessel equation, and hence we have the general solution

Y (X) = C Iν(λX) + D Kν(λX) , (53)

where C and D are arbitrary constants, and Iν and Kν are modified Bessel functions of the first
and second kind respectively.

One can now apply the integral and boundary conditions (45)–(47), in order to determine
the three unknowns C, D, and σ′. The resulting system of equations is not particularly pleasant,
and an analytical solution is unlikely, except in special cases.

3.4 Expansion for ǫ ≪ 1 and K = 0

Since the ǫ ≪ 1 limit in the previous section still proved difficult to solve analytically, we
considered the simpler case K = 0. This corresponds to the case where the vessel wall is able
to open and close, but there is no change in the resistance to the flow associated with this
constriction.
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As before, we take pL = 0 and use a complex representation. The governing equation (22)
becomes

∂θ

∂τ
= D

∂2θ

∂ξ2
, (54)

subject to
∫

1

0

θ dx = V . (55)

θ(0, τ) = 1 − ǫeiτ − σ , (56)

θ(1, τ) = −σ . (57)

We employ the same series expansion (34)–(35) as before, and substitute into the system of
equations (54)–(57). The leading-order solution is found to be

θ̄ = V +
1

2
− ξ , (58)

σ̄ =
1

2
− V . (59)

Hence, the leading-order blood pressure is given by

p̄ = θ̄ + σ̄ = 1 − ξ . (60)

At first order in ǫ, the governing equation for θ′ is

iθ′ = D
∂2θ′

∂ξ2
, (61)

and the integral and boundary conditions are

∫

1

0

θ′ dx = 0 , (62)

θ′(0) = −1 − σ′ , (63)

θ′(1) = −σ′ . (64)

The general solution to (61) may be written as

θ′(ξ) = A sinh

(

(1 + i)√
2D

ξ

)

+ B sinh

(

(1 + i)√
2D

(1 − ξ)

)

. (65)

The three conditions (62)–(64) are then trivially applied to obtain

A = −B =

[

sinh

(

(1 + i)√
2D

)]−1

, σ′ = −1

2
. (66)

The physical solutions are obtained by taking the real parts of θ and σ. The complex
constants A and B make this quite an involved process for θ, but for σ we simply have

σ(τ) =
1

2
− V − 1

2
ǫ cos τ + O(ǫ2) , (67)

and we are interested in comparing this with p(0, τ)/P ∗ = 1−ǫ cos τ . The cuff pressure variations
are therefore in phase with the arterial pressure variations, and have precisely half the amplitude
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Figure 11: Numerical results for the Finapres model, showing (a) the spatial variation of the
fluid pressure at various time steps and (b) the temporal variation of σ (red) and the upstream
pressure p(0, τ) (green). Here K = 0.5, V = 0.5, D = 1, ǫ = 0.1 and pL = 0.

of the imposed upstream arterial pressure. Even if V is chosen carefully, the output σ will need
to be calibrated in order to provide a good measurement of the true arterial pressure.

During the calibration produce of the device, σ is held fixed, and the variation of V is
recorded, but (67) still holds. Interestingly, this suggests that the amplitude of variations in
V is independent of the fixed value of σ chosen. While discrepancies will probably arise at
O(ǫ2), we may well need a better model (quite possibly involving a more accurate tube law,
and accounting for the fact that the cuff and finger will separate rather than allowing negative
transmural pressures) in order to capture the details of the calibration process.

However, we also have that V contains a factor of k so, after calibration, any changes in the
stiffness of the artery wall will affect the value of V and hence disrupt the calibration, altering
the readings obtained.

3.5 Numerical solutions

We solve the full non-linear governing equations using the backwards Euler method (a first-order
implicit finite difference method), using Newton’s method to solve the matrix problem at each
time step and choosing the steady state derived in section 3.3 as an initial condition.

Numerical solutions for K = 0.5, V = 0.5, and D = 1 are shown in figure 11. The spatial
variation of p(ξ, τ) is confined within a fixed envelope defined by the oscillations in pressure at
the upstream end. Correspondingly, the cuff pressure σ(τ) exhibits oscillations of approximately
the same frequency and in phase with the oscillations in pressure.

To investigate the influence of varying the stiffness of the arterial walls we increase the
dimensional parameter k whilst holding all other parameters fixed. To achieve this using our
choice of non-dimensional parameters we increase K whilst holding the values of K D and
V K constant. The temporal variation of σ for increasing k is shown in figure 12, where we
observe that increasing the compliance of the arterial walls serves to increase the mean value of
the blood pressure measurement.

Thus, this model indicates that the Finapres blood pressure measurement is sensitive to
changes in arterial stiffness in direct contrast to the model for the Colin tonometer.
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Figure 12: Numerical results for the Finapres model, showing the temporal variation of σ for
increasing arterial compliance (k). Here K = 0.95 (green), K = 1 (blue) and K = 1.05 (red)
where K D = 0.5, V K = 0.5, ǫ = 0.1 and pL = 0.

4 Discussion and future work

The motivation of this study was the difference observed in measurements of transitional changes
in arterial blood pressure by the Finapres and Colin Radial Artery Tonometer. In this report we
have developed and solved mathematical models of these two devices both in order to provide
insight into the readings they give, and as a first step towards explaining the discrepancies
observed, in particular by testing the hypothesis that changes in arterial stiffness may be behind
the different results.

Our spring-and-dashpot model for the Tonometer suggests that readings are likely to be
insensitive to the elastic properties of the patient’s wrist (which are patient-dependent). Since
this model is simplistic we also proposed a two-dimensional model of the system. This has yet
to be fully solved, but we anticipate that it will describe the behaviour of the tonometer more
accurately. If the portion of the artery wall adjacent to the tonometer is held flat, then the
tension in the wall, which acts mainly through curvature effects, will be significantly reduced.

For the Finapres, we developed and solved a model of one-dimensional blood flow in the
artery under the cuff. In the limit of small-amplitude time-dependent oscillations in the arterial
pressure, and furthermore assuming that the vessel resistance does not depend on its radius, we
were able to find the first few terms in a series expansion analytically. This solution showed the
measured readings are expected to oscillate in phase with the arterial pressure, although their
absolute values may differ. Hence a calibration of the cuff pressure should really be performed to
yield the arterial pressure. Increasing arterial wall stiffness k−1 could affect both the mean cuff
pressure and the amplitude of the pressure variations. Preliminary numerical results appear to
suggest that higher cuff pressures will be recorded in patients with stiffer arteries. This model
does not incorporate the effect of the blood in the vein, so future work could involve developing
a similar vein model that can be coupled with the existing model, using an appropriate model
of the capillaries. Some possible models were briefly described in the text.

Our preliminary results suggest that provoked sympathetic peripheral vasoconstriction may
be able to explain the discrepancies observed, though further investigation is certainly required.

In common with much mathematical modelling work, one major weakness lies in the accurate
determination of suitable parameters. In order to facilitate comparison of the two measurements,
we discussed developing an additional Tonometer model in which blood flow in the artery is
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treated as a one-dimensional flow in a compliant tube, in a similar way to the Finapres model.
Aligning the two models in this way means that they would have some parameters in common,
enabling a better comparison of the behaviours of the two readings, and hence a better basis
on which to investigate the discrepancies.
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